Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 793
Filtrar
1.
Nature ; 615(7950): 111-116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813962

RESUMO

Many animals use Earth's magnetic field (also known as the geomagnetic field) for navigation1. The favoured mechanism for magnetosensitivity involves a blue-light-activated electron-transfer reaction between flavin adenine dinucleotide (FAD) and a chain of tryptophan residues within the photoreceptor protein CRYPTOCHROME (CRY). The spin-state of the resultant radical pair, and therefore the concentration of CRY in its active state, is influenced by the geomagnetic field2. However, the canonical CRY-centric radical-pair mechanism does not explain many physiological and behavioural observations2-8. Here, using electrophysiology and behavioural analyses, we assay magnetic-field responses at the single-neuron and organismal levels. We show that the 52 C-terminal amino acid residues of Drosophila melanogaster CRY, lacking the canonical FAD-binding domain and tryptophan chain, are sufficient to facilitate magnetoreception. We also show that increasing intracellular FAD potentiates both blue-light-induced and magnetic-field-dependent effects on the activity mediated by the C terminus. High levels of FAD alone are sufficient to cause blue-light neuronal sensitivity and, notably, the potentiation of this response in the co-presence of a magnetic field. These results reveal the essential components of a primary magnetoreceptor in flies, providing strong evidence that non-canonical (that is, non-CRY-dependent) radical pairs can elicit magnetic-field responses in cells.


Assuntos
Criptocromos , Drosophila melanogaster , Campos Magnéticos , Animais , Criptocromos/química , Criptocromos/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Triptofano/metabolismo , Eletrofisiologia , Comportamento Animal , Análise de Célula Única , Neurônios/citologia , Neurônios/metabolismo
2.
PLoS One ; 17(7): e0270840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797274

RESUMO

Bombyx mori is an important economic insect, its economic value mainly reflected in the silk yield. The major functional genes affecting the silk yield of B. mori have not been determined yet. Bombyx mori vacuolar protein sorting-associated protein 13d (BmVps13d) has been identified, but its function is not reported. In this study, BmVps13d protein shared 30.84% and 34.35% identity with that of in Drosophila melanogaster and Homo. sapiens, respectively. The expressions of BmVps13d were significantly higher in the midgut and silk gland of JS (high silk yield) than in that of L10 (low silk yield). An insertion of 9 bp nucleotides and two deficiencies of adenine ribonucleotides in the putative promoter region of BmVps13d gene in L10 resulted in the decline of promoter activity was confirmed using dual luciferase assay. Finally, the functions of BmVps13d in B. mori were studied using the CRISPR/Cas9 system, and the mutation of BmVps13d resulted in a 24.7% decline in weight of larvae, as well as a 27.1% (female) decline and a 11.8% (male) decline in the silk yield. This study provides a foundation for studying the molecular mechanism of silk yield and breeding the silkworm with high silk yield.


Assuntos
Bombyx , Genes de Insetos , Proteínas de Insetos , Seda , Animais , Bombyx/química , Bombyx/genética , Bombyx/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/química , Feminino , Genes de Insetos/genética , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Larva/anatomia & histologia , Masculino , Mutação , Regiões Promotoras Genéticas/genética , Proteínas , Seda/biossíntese
3.
Nature ; 607(7918): 393-398, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768503

RESUMO

In flies, Argonaute2 (Ago2) and small interfering RNA (siRNA) form an RNA-induced silencing complex to repress viral transcripts1. The RNase III enzyme Dicer-2 associates with its partner protein R2D2 and cleaves long double-stranded RNAs to produce 21-nucleotide siRNA duplexes, which are then loaded into Ago2 in a defined orientation2-5. Here we report cryo-electron microscopy structures of the Dicer-2-R2D2 and Dicer-2-R2D2-siRNA complexes. R2D2 interacts with the helicase domain and the central linker of Dicer-2 to inhibit the promiscuous processing of microRNA precursors by Dicer-2. Notably, our structure represents the strand-selection state in the siRNA-loading process, and reveals that R2D2 asymmetrically recognizes the end of the siRNA duplex with the higher base-pairing stability, and the other end is exposed to the solvent and is accessible by Ago2. Our findings explain how R2D2 senses the thermodynamic asymmetry of the siRNA and facilitates the siRNA loading into Ago2 in a defined orientation, thereby determining which strand of the siRNA duplex is used by Ago2 as the guide strand for target silencing.


Assuntos
Microscopia Crioeletrônica , Proteínas de Drosophila , RNA Helicases , RNA de Cadeia Dupla , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Ribonuclease III , Animais , Proteínas Argonautas/metabolismo , Pareamento de Bases , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , Multimerização Proteica , RNA Helicases/química , RNA Helicases/metabolismo , RNA Helicases/ultraestrutura , Interferência de RNA , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/ultraestrutura , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Complexo de Inativação Induzido por RNA/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Ribonuclease III/ultraestrutura
4.
Sci Rep ; 11(1): 23013, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34837025

RESUMO

The nucleosome surface contains an area with negative electrostatic potential known as the acidic patch, which functions as a binding platform for various proteins to regulate chromatin biology. The dense clustering of acidic residues may impact their effective pKa and thus the electronegativity of the acidic patch, which in turn could influence nucleosome-protein interactions. We here set out to determine the pKa values of residues in and around the acidic patch in the free H2A-H2B dimer using NMR spectroscopy. We present a refined solution structure of the H2A-H2B dimer based on intermolecular distance restraints, displaying a well-defined histone-fold core. We show that the conserved histidines H2B H46 and H106 that line the acidic patch have pKa of 5.9 and 6.5, respectively, and that most acidic patch carboxyl groups have pKa values well below 5.0. For H2A D89 we find strong evidence for an elevated pKa of 5.3. Our data establish that the acidic patch is highly negatively charged at physiological pH, while protonation of H2B H106 and H2B H46 at slightly acidic pH will reduce electronegativity. These results will be valuable to understand the impact of pH changes on nucleosome-protein interactions in vitro, in silico or in vivo.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/química , Histonas/química , Nucleossomos/química , Animais , Cromatina/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Eletricidade Estática
5.
Elife ; 102021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787570

RESUMO

Functional requirements constrain protein evolution, commonly manifesting in a conserved amino acid sequence. Here, we extend this idea to secondary structural features by tracking their conservation in essential meiotic proteins with highly diverged sequences. The synaptonemal complex (SC) is a ~100-nm-wide ladder-like meiotic structure present in all eukaryotic clades, where it aligns parental chromosomes and regulates exchanges between them. Despite the conserved ultrastructure and functions of the SC, SC proteins are highly divergent within Caenorhabditis. However, SC proteins have highly conserved length and coiled-coil domain structure. We found the same unconventional conservation signature in Drosophila and mammals, and used it to identify a novel SC protein in Pristionchus pacificus, Ppa-SYP-1. Our work suggests that coiled-coils play wide-ranging roles in the structure and function of the SC, and more broadly, that expanding sequence analysis beyond measures of per-site similarity can enhance our understanding of protein evolution and function.


Assuntos
Caenorhabditis elegans/química , Drosophila melanogaster/química , Complexo Sinaptonêmico/química , Animais , Rabditídios/química , Especificidade da Espécie , Relação Estrutura-Atividade
6.
J Chem Ecol ; 47(8-9): 719-731, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34402994

RESUMO

Organisms depend on visual, auditory, and olfactory cues to signal the presence of danger that could impact survival and reproduction. Drosophila melanogaster emits an olfactory alarm signal, termed the Drosophila stress odorant (dSO), in response to mechanical agitation or electric shock. While it has been shown that conspecifics avoid areas previously occupied by stressed individuals, the contextual underpinnings of the emission of, and response to dSO, have received little attention. Using a binary choice assay, we determined that neither age and sex of emitters, nor the time of the day, affected the emission or avoidance of dSO. However, both sex and mating status affected the response to dSO. We also demonstrated that while D. melanogaster, D. simulans, and D. suzukii, have different dSO profiles, its avoidance was not species-specific. Thus, dSO should not be considered a pheromone but a general alarm signal for Drosophila. However, the response levels to both intra- and inter-specific cues differed between Drosophila species and possible reasons for these differences are discussed.


Assuntos
Drosophila/química , Odorantes/análise , Envelhecimento , Animais , Relógios Biológicos , Drosophila/fisiologia , Drosophila melanogaster/química , Drosophila melanogaster/fisiologia , Estimulação Elétrica , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Fatores Sexuais , Comportamento Sexual Animal , Especificidade da Espécie , Estresse Mecânico , Compostos Orgânicos Voláteis/análise
7.
mBio ; 12(4): e0082421, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253067

RESUMO

The gut microbiota affects the physiology and metabolism of animals and its alteration can lead to diseases such as gut dysplasia or metabolic disorders. Several reports have shown that the immune system plays an important role in shaping both bacterial community composition and abundance in Drosophila, and that immune deficit, especially during aging, negatively affects microbiota richness and diversity. However, there has been little study at the effector level to demonstrate how immune pathways regulate the microbiota. A key set of Drosophila immune effectors are the antimicrobial peptides (AMPs), which confer defense upon systemic infection. AMPs and lysozymes, a group of digestive enzymes with antimicrobial properties, are expressed in the gut and are good candidates for microbiota regulation. Here, we take advantage of the model organism Drosophila melanogaster to investigate the role of AMPs and lysozymes in regulation of gut microbiota structure and diversity. Using flies lacking AMPs and newly generated lysozyme mutants, we colonized gnotobiotic flies with a defined set of commensal bacteria and analyzed changes in microbiota composition and abundance in vertical transmission and aging contexts through 16S rRNA gene amplicon sequencing. Our study shows that AMPs and, to a lesser extent, lysozymes are necessary to regulate the total and relative abundance of bacteria in the gut microbiota. We also decouple the direct function of AMPs from the immune deficiency (IMD) signaling pathway that regulates AMPs but also many other processes, more narrowly defining the role of these effectors in the microbial dysbiosis observed in IMD-deficient flies upon aging. IMPORTANCE This study advances current knowledge in the field of host-microbe interactions by demonstrating that the two families of immune effectors, antimicrobial peptides and lysozymes, actively regulate the gut microbiota composition and abundance. Consequences of the loss of these antimicrobial peptides and lysozymes are exacerbated during aging, and their loss contributes to increased microbiota abundance and shifted composition in old flies. This work shows that immune effectors, typically associated with resistance to pathogenic infections, also help shape the beneficial gut community, consistent with the idea that host-symbiont interactions use the same "language" typically associated with pathogenesis.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Muramidase/metabolismo , Animais , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/imunologia , Bactérias/classificação , Bactérias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Feminino , Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos , Sistema Imunitário , Muramidase/genética , Muramidase/imunologia , RNA Ribossômico 16S/genética , Simbiose
8.
Methods Mol Biol ; 2326: 327-337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34097280

RESUMO

Trace metal elements, such as zinc, iron, copper, and manganese, play catalytic or structural roles in many enzymes and numerous proteins, and accordingly, contribute to a variety of fundamental biological processes. During the past decade, the fruit fly (Drosophila melanogaster) has become an important model organism for elucidating metal homeostasis in metazoan. We have been using Drosophila as a model to study metal metabolism for many years and have optimized simple and robust assays for determining the metal content in Drosophila, such as inductively coupled plasma mass spectrometry (ICP-MS), the activity assay of enzymes dependent on metals, and staining metal ions in tissues of Drosophila. In this chapter, we present the step-by-step detailed methods for detecting the metal content in Drosophila melanogaster during metal toxicity study.


Assuntos
Drosophila melanogaster/química , Metais/análise , Animais , Colorimetria/métodos , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Ensaios Enzimáticos/métodos , Espectrometria de Massas/métodos , Metais/metabolismo , Metais/toxicidade , Oligoelementos/análise , Oligoelementos/metabolismo , Oligoelementos/toxicidade
9.
Methods Mol Biol ; 2306: 187-213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954948

RESUMO

Lipids play critical roles in developmental processes, and alterations in lipid metabolism are linked to a wide range of human diseases, including neurodegeneration, cancer, metabolic diseases, and microbial infections. Drosophila melanogaster, more commonly known as the fruit fly, is a powerful organism for developmental biology and human disease research. We have previously developed a comprehensive biochemical tool, based on liquid chromatography-mass spectrometry (LC-MS), to probe the dynamics of lipid remodeling during D. melanogaster development. This chapter introduces a step-by-step protocol for extracting and analyzing lipids across all developmental stages (embryo, larvae, pupa, and adult) of D. melanogaster. The targeted semi-quantitative approach offers a comprehensive coverage of more than 400 lipid species spanning the lipid classes, glycerophospholipids, sphingolipids, triacylglycerols, and sterols.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Lipidômica/métodos , Lipídeos/análise , Animais , Fracionamento Químico , Cromatografia Líquida , Análise de Dados , Drosophila melanogaster/química , Lipídeos/química , Estrutura Molecular , Software , Espectrometria de Massas em Tandem
10.
Molecules ; 26(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925418

RESUMO

Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.


Assuntos
Amidas/química , Ácidos Graxos/química , Lipídeos/química , Amidas/síntese química , Amidas/metabolismo , Animais , Abelhas/química , Bombyx/química , Linhagem Celular , Drosophila melanogaster/química , Ácidos Graxos/síntese química , Ácidos Graxos/metabolismo , Lipídeos/genética , Camundongos , Ovinos , Tribolium/química
11.
Elife ; 102021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33787495

RESUMO

Some RIG-I-like receptors (RLRs) discriminate viral and cellular dsRNA by their termini, and Drosophila melanogaster Dicer-2 (dmDcr-2) differentially processes dsRNA with blunt or 2 nucleotide 3'-overhanging termini. We investigated the transient kinetic mechanism of the dmDcr-2 reaction using a rapid reaction stopped-flow technique and time-resolved fluorescence spectroscopy. Indeed, we found that ATP binding to dmDcr-2's helicase domain impacts association and dissociation kinetics of dsRNA in a termini-dependent manner, revealing termini-dependent discrimination of dsRNA on a biologically relevant time scale (seconds). ATP hydrolysis promotes transient unwinding of dsRNA termini followed by slow rewinding, and directional translocation of the enzyme to the cleavage site. Time-resolved fluorescence anisotropy reveals a nucleotide-dependent modulation in conformational fluctuations (nanoseconds) of the helicase and Platform-PAZ domains that is correlated with termini-dependent dsRNA cleavage. Our study offers a kinetic framework for comparison to other Dicers, as well as all members of the RLRs involved in innate immunity.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , RNA Helicases/química , Ribonuclease III/química , Trifosfato de Adenosina/metabolismo , Animais , Cinética
12.
Biochem Biophys Res Commun ; 553: 92-98, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33765559

RESUMO

NF2/Merlin is an upstream regulator of hippo pathway, and it has two states: an auto-inhibited "closed" state and an active "open" form. Previous studies showed that Drosophila Merlin adopts a more closed conformation. However, the molecular mechanism of conformational regulation remains poorly understood. Here, we first confirmed the strong interaction between FERM and the C-terminal domain (CTD) of Merlin, and then determined the crystal structure of the FERM/CTD complex, which reveals the structural basis of Merlin adopting a more closed conformation compared to its human cognate NF2. Interestingly, we found that the conserved lipid-binding site of Merlin might be masked by a linker. Confocal analyses confirmed that all putative lipid-binding site are very important for the membranal location of Merlin. More, we found that the phosphomimic Thr616Asp mutation weakens the interaction between FERM and CTD of Merlin. Collectively, the crystal structure of the FERM/CTD complex not only provides a mechanistic explanation of functionally dormant conformation of Merlin may also serve as a foundation for revealing the mechanism of conformational regulation of Merlin.


Assuntos
Drosophila melanogaster/química , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Multimerização Proteica , Animais , Sítios de Ligação , Drosophila melanogaster/genética , Lipídeos , Modelos Moleculares , Mutação , Neurofibromina 2/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica/genética
13.
Biochim Biophys Acta Gen Subj ; 1865(5): 129854, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497735

RESUMO

BACKGROUND: In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS: The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS: The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS: The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE: The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/química , Antiporters/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Evolução Molecular , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
Insect Sci ; 28(1): 191-202, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31990127

RESUMO

The predatory bug, Orius majusculus (Reuter), is an important predator of thrips commercially produced for augmentative releases using the eggs of the Mediterranean flour moth Ephestia kuehniella (Zeller). In this study, we assessed the potential for using frozen adults of fruit flies, Drosophila melanogaster (Meigen), either as nymphal rearing diet or as diet throughout the entire life-cycle. We compared life-history traits and reproduction of predators when fed D. melanogaster with high lipid body content (lipid-rich) and with high protein body content (protein-rich), using a diet of 100% E. kuehniella eggs as control. We also analyzed the biochemical composition of both prey and predator in order to assess the nutritional quality of each diet, which partially explained the adequacy of the different diets for O. majusculus. There were significant differences between predators fed the two types of D. melanogaster, with the protein-rich flies as diet providing the best results in terms of mortality and fecundity. Furthermore, we show that while feeding O. majusculus throughout their development with D. melanogaster increases mortality and reduces reproduction, protein-rich D. melanogaster can be used as nymphal diet with minimal reduction in reproductivity and minimal increase in mortality.


Assuntos
Ração Animal/análise , Drosophila melanogaster/química , Heterópteros/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Controle Biológico de Vetores , Animais , Dieta , Feminino , Masculino , Valor Nutritivo
15.
Cell Stress Chaperones ; 26(1): 265-274, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888179

RESUMO

The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress proteins found in all domains of life. Drosophila melanogaster Hsp27 (DmHsp27) is the only known nuclear sHsp in insect. Here analyzing sequences from HMMER, we identified 56 additional insect sHsps with conserved arginine-rich nuclear localization signal (NLS) in the N-terminal region. At this time, the exact role of nuclear sHsps remains unknown. DmHsp27 protein-protein interaction analysis from iRefIndex database suggests that this protein, in addition to a putative role of molecular chaperone, is likely involved in other nuclear processes (i.e., chromatin remodeling and transcription). Identification of DmHsp27 interactors should provide key insights on the cellular and molecular functions of this nuclear chaperone.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico Pequenas/química , Proteínas de Insetos/química , Insetos/química , Mapas de Interação de Proteínas
16.
Methods Mol Biol ; 2191: 97-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32865741

RESUMO

Optogenetics enables experimental control over neural activity using light. Channelrhodopsin and its variants are typically activated using visible light excitation but can also be activated using infrared two-photon excitation. Two-photon excitation can improve the spatial precision of stimulation in scattering tissue but has several practical limitations that need to be considered before use. Here we describe the methodology and best practices for using two-photon optogenetic stimulation of neurons within the brain of the fruit fly, Drosophila melanogaster, with an emphasis on projection neurons of the antennal lobe.


Assuntos
Channelrhodopsins/química , Drosophila melanogaster/efeitos da radiação , Neurônios/efeitos da radiação , Optogenética/métodos , Animais , Channelrhodopsins/efeitos da radiação , Drosophila melanogaster/química , Luz , Fótons
17.
BMC Biol ; 18(1): 195, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317537

RESUMO

BACKGROUND: Elasticity prevents fatigue of tissues that are extensively and repeatedly deformed. Resilin is a resilient and elastic extracellular protein matrix in joints and hinges of insects. For its mechanical properties, Resilin is extensively analysed and applied in biomaterial and biomedical sciences. However, there is only indirect evidence for Resilin distribution and function in an insect. Commonly, the presence of dityrosines that covalently link Resilin protein monomers (Pro-Resilin), which are responsible for its mechanical properties and fluoresce upon UV excitation, has been considered to reflect Resilin incidence. RESULTS: Using a GFP-tagged Resilin version, we directly identify Resilin in pliable regions of the Drosophila body, some of which were not described before. Interestingly, the amounts of dityrosines are not proportional to the amounts of Resilin in different areas of the fly body, arguing that the mechanical properties of Resilin matrices vary according to their need. For a functional analysis of Resilin matrices, applying the RNA interference and Crispr/Cas9 techniques, we generated flies with reduced or eliminated Resilin function, respectively. We find that these flies are flightless but capable of locomotion and viable suggesting that other proteins may partially compensate for Resilin function. Indeed, localizations of the potentially elastic protein Cpr56F and Resilin occasionally coincide. CONCLUSIONS: Thus, Resilin-matrices are composite in the way that varying amounts of different elastic proteins and dityrosinylation define material properties. Understanding the biology of Resilin will have an impact on Resilin-based biomaterial and biomedical sciences.


Assuntos
Drosophila melanogaster/fisiologia , Voo Animal , Proteínas de Insetos/fisiologia , Comportamento Sexual Animal , Animais , Drosophila melanogaster/química , Feminino , Proteínas de Insetos/química , Masculino , Interferência de RNA
18.
J Agric Food Chem ; 68(50): 14768-14780, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33274636

RESUMO

Broflanilide, a novel insecticide, is classified as a negative allosteric modulator (NAM) of insect γ-aminobutyric acid (GABA) receptors (GABARs) as desmethyl-broflanilide (DMBF) allosterically inhibits the GABA-induced responses. The G277M mutation of the Drosophila melanogaster GABAR subunit has been reported to abolish the inhibitory activity of DMBF. The binding mode of DMBF in insect GABARs needs to be clarified to understand the underlying mechanism of this mutation and to develop novel, efficient NAMs of insect GABARs. Here, we found that a hydrogen bond formed between DMBF and G277 of the D. melanogaster GABAR model might be the key interaction for the antagonism of DMBF by in silico simulations. The volume increase induced by the G277M mutation blocks the entrance of the binding pocket, making it difficult for DMBF to enter the binding pocket and thereby decreasing its activity. The following virtual screening and bioassay results identified a novel NAM candidate of insect GABARs. Overall, we reported a possible binding mode of DMBF in insect GABARs and proposed the insensitivity mechanism of the G277M mutant GABAR to DMBF using molecular simulations. The identified NAM candidates might provide more alternatives or potentials for the design of GABAR-targeting insecticides.


Assuntos
Benzamidas/química , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Antagonistas GABAérgicos/química , Receptores de GABA/química , Receptores de GABA/metabolismo , Animais , Benzamidas/metabolismo , Benzamidas/farmacologia , Simulação por Computador , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/farmacologia , Simulação de Acoplamento Molecular , Receptores de GABA/genética
19.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086760

RESUMO

Interconnected transcriptional and translational feedback loops are at the core of the molecular mechanism of the circadian clock. Such feedback loops are synchronized to external light entrainment by the blue light photoreceptor cryptochrome (CRY) that undergoes conformational changes upon light absorption by an unknown photoexcitation mechanism. Light-induced charge transfer (CT) reactions in Drosophila CRY (dCRY) are investigated by state-of-the-art simulations that reveal a complex, multi-redox site nature of CT dynamics on the microscopic level. The simulations consider redox-active chromophores of the tryptophan triad (Trp triad) and further account for pathways mediated by W314 and W422 residues proximate to the C-terminal tail (CTT), thus avoiding a pre-bias to specific W-mediated CT pathways. The conducted dissipative quantum dynamics simulations employ microscopically derived model Hamiltonians and display complex and ultrafast CT dynamics on the picosecond timescale, subtly balanced by the electrostatic environment of dCRY. In silicio point mutations provide a microscopic basis for rationalizing particular CT directionality and demonstrate the degree of electrostatic control realized by a discrete set of charged amino acid residues. The predicted participation of CT states in proximity to the CTT relates the directionality of CT reactions to the spatial vicinity of a linear interaction motif. The results stress the importance of CTT directional charge transfer in addition to charge transfer via the Trp triad and call for the use of full-length CRY models including the interactions of photolyase homology region (PHR) and CTT domains.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Drosophila melanogaster/genética , Animais , Criptocromos/química , Drosophila melanogaster/química , Luz , Oxirredução/efeitos da radiação , Células Fotorreceptoras/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Triptofano/genética
20.
Biometals ; 33(6): 293-303, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33026606

RESUMO

Insect epidermal cells secrete a cuticle that serves as an exoskeleton providing mechanical rigidity to each individual, but also insulation, camouflage or communication within their environment. Cuticle deposition and hardening (sclerotization) and pigment synthesis are parallel processes requiring tyrosinase activity, which depends on an unidentified copper-dependent enzyme component in Drosophila melanogaster. We determined the metallomes of fly strains selected for lighter or darker cuticles in a laboratory evolution experiment, asking whether any specific element changed in abundance in concert with pigment deposition. The results showed a correlation between total iron content and strength of pigmentation, which was further corroborated by ferritin iron quantification. To ask if the observed increase in iron body content along with increased pigment deposition could be generalizable, we crossed yellow and ebony alleles causing light and dark pigmentation, respectively, into similar genetic backgrounds and measured their metallomes. Iron remained unaffected in the various mutants providing no support for a causative link between pigmentation and iron content. In contrast, the combined analysis of both experiments suggested instead a correlation between pigment deposition and total copper body content, possibly due to increased demand for epidermal tyrosinase activity.


Assuntos
Cobre/análise , Drosophila melanogaster/química , Animais , Cobre/metabolismo , Drosophila melanogaster/metabolismo , Melaninas/análise , Melaninas/metabolismo , Pigmentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA